Decoding an Accelerometer Specification Sheet... What Sensor Manufacturer's Don't Tell You!

David Lally

VP Engineering PCB Piezotronics, Inc.

IMAC-XXVII February 2008

- Specification Sheet
 - Provides a set of performance characteristics for a particular model of accelerometer

- How do manufacturers know what to specify?
 - ISA-RP37.2-1982 (1995) provides a "Guide for Specifications and Tests for Piezoelectric Acceleration Transducers for Aerospace Testing"
 - This document provides a list of "basic" performance specifications which are "normally included" as well as lists "supplemental" performance specifications, "which may be specified if desired.
 - Use best judgment based to include "important" specifications based on sensor application
 - Comparison to competitor's specifications

Specification Sheet Reality

- Unfortunately for the test engineer, specification sheets are often generated to be a sales & marketing tool rather than a technical document
 - Goal Make the sensor look as attractive as possible
- The ability to make any sensor look good on paper is commonly known in the industry as "specmanship"!

- Why can specification sheets be confusing
 - Certain specifications may be omitted
 - Spec was left off because engineer or product manager felt it was not important for intended application
 - Controlling cost by not completely testing the sensor
 - Somebody is trying to hide something
 - Sensor performance may be described at "typical" (without an indicated tolerance)
 - Approved standards or industry-wide accepted methods do
 NOT exist for measuring all sensor characteristics

Omission of Specifications

 A comparison of specification sheets of a similar accelerometer from 5 different sensor manufacturers indicated...

5 of 5 Mfg's Listed:

Reference Sensitivity

Acceleration Range

Frequency Resp. / Res. Freq.

Broadband Resolution

Transverse Sensitivity

Shock Limit

Operating Temp Range

Temperature Response

Supply Voltage/Current

Output Impedance

Output Bias Voltage

Housing Material & Connector

Sealing

Dimensions / Weight / Mounting

4 of 5 Mfg's Listed:

Amplitude Linearity

3 of 5 Mfg's Listed:

Discharge Time Constant

Warm-Up Time

Sensing Element Material

Sensing Element Style

Vibration Limit

Base Strain Sensitivity

2 of 5 Mfg's Listed:

FS Output Voltage

Grounding

Output Polarity

Thermal Transient Sensitivity

1 of 5 Mfg's Listed:

Spectral Noise

Magnetic Sensitivity

0 of 5 Mfg's Listed:

Amplification Factor

Acoustic Sensitivity

Storage Temperature Range

Mounting Error

Sensitivity Stability

Damping

Mounting Surface Preparation Supply Current Sensitivity

• "Typical" Specifications

- When no tolerance is specified, there is "no guarantee" for exact sensor performance related to that particular specification
- At PCB...
 - "Typical" can be considered synonymous with "average"
 - Specification value defined during qualification testing of prototype and pilot run production builds
 - 30 piece minimum for stock and standard sensors
 - Currently used only for temperature response (also known as thermal sensitivity), noise and weight specifications
- Review of various manufacturer's (including "old" PCB) spec sheets may use "typical" to describe sensitivity, frequency response, capacitance, resonance, bias voltage, strain sensitivity, magnetic sensitivity, time constant & output impedance

- "Typical" Specifications
 - Practical Implication
 - Every sensor passes a "typical" specification
 - Assuming an average value is used, there is still no statistical characterization (e.g. standard deviation) of the specification
 - Depending on sensor design and manufacturing process control, actual performance could vary "greatly" from sensor to sensor

Specification	Typical Variation
Sensor Weight	Tenths of a percent
Temperature Response	A few percent
Noise Floor	100 percent

- Specifications Defined in Multiple Ways
 - Threshold
 - The smallest change in acceleration that will result in a measureable change in sensor output. (ISA RP37.1)
 - Often used interchangeably with Residual Noise, Broadband Resolution and Noise Floor
 - Measured in many different ways and may lead to confusion when using or comparing accelerometers
 - broadband g rms, g pk, g pk-pk
 - frequency limited broadband (1 Hz to 10 kHz) g rms
 - spectral noise floor g/\sqrt{Hz}

- Specifications Defined in Multiple Ways
 - Threshold Test Set-up

- Specifications Defined in Multiple Ways
 - Broadband Resolution
 - Early methods simply measured the signal directly on a scope without the use of frequency limiting filters

- Specifications Defined in Multiple Ways
 - Spectral Noise
 - Today's procedure uses an FFT Analyzer

- Specifications Defined in Multiple Ways
 - Broadband Noise
 - Integrate spectral noise floor to obtain broadband (but frequency limited) noise floor

- Specifications Defined in Multiple Ways
 - Amplitude Linearity
 - Provides an indication that the sensitivity of the sensor does not vary with acceleration amplitude

- Specifications Defined in Multiple Ways
 - Amplitude Linearity
 - Most often defined as zero-based, least squares straight line
 - Slop of line = Sensitivity
 - Usually specified as <±1%

- Specifications Defined in Multiple Ways
 - Amplitude Linearity
 - However, sometimes specified as % FS / g where linearity depicts the maximum sensitivity change
 - For example, 1% per 10,000g, 0 g to 50,000 g means sensitivity can change by 5% over its measurement range

10,000 g sensitivity: 1000 mV/10,000 g = .1 mV/g

50,000 g sensitivity: 5210 mV / 50,000 g = .1042 mV/g

Sensitivitiy Change (.104-.1)/.1*100 = 4.2%

- Specifications Defined in Multiple Ways
 - ESD / RFI Protection
 - Often listed for industrial health monitoring applications
 - CE Mark
 - Manufacturer determines acceptable level of immunity
 - TEDS
 - Transducer electronic datasheet (V0.9, V1.0, LMS)
 - Low Pass Filtering
 - Does the sensor have a single pole (or higher order) low pass filter to reduce amplification at resonance?
 - Where is and what is the tolerance of the cut-off frequency?
 - Overload Recovery
 - Size & shape of overload pulse. When is sensor "recovered"?

- Other Important Performance Notes
 - Transverse Sensitivity
 - Sensitivity of the accelerometer to acceleration perpendicular to the sensitive access.

Simply expressed as % of Axial Sensitivity

$$\%_0 = \frac{\text{Transverse Sensitivity (mV/g)}}{\text{Axial Sensitivity (mV/g)}} \times 100$$

• Test typically conducted at single freq <1000Hz

- Other Important Performance Notes
 - Transverse Sensitivity
 - There are directions of maximum and minimum sensitivity

• Resonance exists at ~40% of axial resonance

- Other Important Performance Notes
 - Sealing
 - All-Welded, Epoxy Sealed, Hermetic, Sealed by Silicone, and Vented
 - How is Hermetic defined?
 - 10⁻³ cc atm/sec Normal Gross Leak / Bubble Test
 - 10⁻⁵ cc He/sec Helium Gross Leak / Bubble Test
 - <10⁻⁸ cc He/sec Helium Leak Test

- Other Important Performance Notes
 - Sealing
 - Why is it important?
 - Insulation resistance inside of sensor needs to be on the order of a Teraohm (1E12 ohms) for proper operation
 - Contamination and / or moisture (humidity) inside the sensor due to a poor seal can reduce resistance and cause performance issues such as short time constant, no turn on or a low bias sensor
 - Sensor may appear as fine with single point sensitivity check.
 - Best remedy includes opening sensor, cleaning, "bake out" and reseal (weld or epoxy)

• Other Important Notes

- Specifications are defined at room temperature and may be different at min. / max. operating temperature
 - Bias level, Discharge Time Constant, IR, Capacitance
- Only a small portion of specs are used as acceptance test on every accelerometer that is produced
 - Typically: Reference Sensitivity, Frequency Response, Bias, Transverse Sensitivity and Resonant Frequency
 - At PCB, stock products are sent through an annual verification process to help insure all performance characteristics still pass the specification limits. This helps to validate process control in manufacturing.

Conclusion

- Similar sensors from different manufacturers are often difficult to compare against one another
- May need to contact manufacturer to request additional test data if an "important" specification has been omitted
- Know and trust your vendor.

Caveat Emptor!